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For linear and quadratic spline interpolation at nodes which are weighted
avearges of the spline knots, conditions on the weights are developed which
guarantee that the corresponding spline interpolation operators are norm·bounded
independently of the knot locations.

I. INTRODUCTION

Let k >0 and n > I be integers and let

be a strictly increasing sequence of finite real numbers. A function s with
domain [t 1 , tn +k + I ] is said to be a spline of degree k with knots t provided

(a) s E C k
-

l [tl' tn+k+IJ (if k> I),

(b) sU)(tl)=sU)(tn+k+I)=O forj=O, I, ...,k-I (ifk> I) and

(c) sex) is a polynomial of degree k or less on each interval (t i , t i + I)
for i = I, 2,... , n + k.

If k = 0, s(tJ = ![s(ti+) +S(ti-) ] for i = 1,2,... , n + 1. For fixed t and k the
set of such splines is a linear vector space whose dimension is n. The end
conditions (b) have been chosen for convenience below. In practical
applications they are often modified to suit the conditions of a particular
problem. In most such instances the assertions below will still be valid.

Let w: wo, WI'"'' wk ' wk+ 1 be a sequence of nonnegative numbers whose
sum is one with

Wo < I and
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(1.1 )
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Let t: TI < Tz < ." < Tn be defined by

Let Y:Yl'Yz'''''Yn be an arbitrary sequence of real numbers. A spline
function S of degree k with knots t is said to interpolate the data y at the
nodes t if

(d) S(T;)=Yi for i= 1,2,..., n.

For fixed k, w, and t the association from data vectors y to their inter­
polating splines S = Py defines the splines interpolation operator P. The
constraint (1.1) on Wo and wk+ I is sufficient (and necessary) to guarantee
that P is well-defined.

The operator norm IIPII is defined as

IIPII = sup{IIPyII: Ilyll = I},

where

and Iisil = max x Is(x)l·

The purpose of this article is, for some low values of k, to derive some
conditions on w which will guarantee that II P II is bounded independently of t.

The following has already appeared in [6].

THEOREM I.I. For fixed degree k ~ I and fixed w a necessary condition
that IIPII be bounded independently oft is that

WI> 0, W z > 0,..., W k > 0.

Proof Let n = 4, let y be given by Yi = (_I)i, and let C be a bound on
IIPII. Since

we may "highlight" a specific wj by letting

and

This coalescence is known (see [3)) to preserve the first-derivative continuity
of s = Py if°<j < k + 1. But then the mean-value theorem and a theorem of
A. A. Markov (see [7]) gives, in the limit,

2 = S(Tz) - S(T3) = s'(e)(Tz - T3):::;; CkZ(T3- Tz) = 2Cewj

so that wj ~ 1/(CkZ
) > O. I
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A corollary of this theorem is the well-known fact that cubic spline inter­
polation "at the knots" (T i = ti + 2) is not uniformly norm-bounded.

2. THE CASES k = 0 AND k = 1

For k = 0, IIPII = 1 independently of t (and of w).
For k = I the problem is no longer trivial. We have

THEOREM 2.1. For spline interpolation of degree one lim sup! II PII is
finite if and only if Wo <4and w2 < 4in which case

lim sup! IIPII = maxi 1/(1 - 2wo)' 1/(1 - 2w 2 )}.

Proof We may assume that each open knot interval (ti' ti+ I) for
j = 2, 3,..., n includes at least one of the Ti since otherwise it would be
possible, for each y, to delete either the knots II' t2 , ... , tj _ I or the knots
tj + 2 , ... , tn + l' tn + 2 (and some of the data) without changing the value of
II Py II· With this assumption, all but one of the nodes have been located. The
remaining node appears on some closed interval Itp' tp + I I with
l~p~n+I.

The following assumptions involve some loss of generality: We assume
that p < n + 1 and that IIPyII = /s(tp+r)1 with r> O. Setting To = t l if
necessary, we have

Without any further loss of generality, we maximize II Py II by assuming that
p> 1 and that S(T;) = (_I)i for each i. For convenience we set a i = IS(lp+i)l.
Similar triangles give

lp+ 1 - Tp _ 1

Tp-Tp _ 1

and
a i +a i _ 1

1 +ai - 1

lp+i-lp+i_1

Tp + i _ 1 - lp+i-l'

<--- for i = 2, 3,..., r.
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These inequalities solve recursively as

if Wo *- i. They solve as

1+ 2jw( - WI
aj <-----'­

WI

if Wo = 1.
An argument on the relatives sizes of adjoining knot intervals shows that

all of these inequalities are sharp so that we must conclude that IIPyJI = a r is
bounded independently of r if and only if Wo <1, in which case the best
bound is IIPyII < 1/(1- 2wo).

The loss of generality mentioned above resulted from our assumptions that
p < n + I and r > O. If these are relaxed, we have an exactly symmetric
instance which leads to the best bound IIPyII < 1/(1- 2w2 ). I

COROLLARY 2.2. For spline interpolation of degree one, IIPII = I
independently of t if and only if Wo = W 2 = O.

If, as is sometimes fashionable, one adds the local-mesh-ratio constraint

for i = 2, 3,... , n + I

the effect is to replace Wo by Wo - qW2 and to replace w2 by W2- qwo in the
statements of Theorem 2. I provided that q is sufficiently small that these
quantities are positive.

3. THE CASE k = 2

For quadratic spline interpolation we will produce a family of necessary
conditions on w that IIPII be bounded independently of t by considering the
particular choice of knots

for j = I, 2,... , n + 3 (3. I)

and requiring that IIPII be bounded independently of n for each q > O. This
contrasts to the approach in [6], where q was permitted to go to zero "first."

Our theorem will involve the following three sets of conditions on w, each
parametrized bye.
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CONDITION A. For 1 - W o <8 ~ 1

where

205

(3.2)

Condition B. For 1 < 8 < 81

where ql is given by (3.3) and

8
1

= 1 - W z + w3 + V(wo + wI)z + 4wow3

2w3

if W 3 > 0, while 81 = C1) if w3 = O.

Condition C. For 1 - w3 < 8 ~ 1

where

(3.4 )

(3.5)

(3.6)

Observe that Condition C is the symmetric form of Condition A.

THEOREM 3.1. For quadratic spline interpolation with t giuven by (3.1),
a necessary and sufficient condition that II P II be bounded independently of 11

for each q > 0 is that w satisfy WI > 0, Wz > 0, and Conditions A, B, and C.

Proof We begin by deducing Condition A. If Wo = 0, (3.2) is a triviality.
Thus, we suppose wo > O. We set

(3.8)

Then, in view of (3.1),

for i = 1,2,... , n.
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If 1 - Wo < 0 < 1, as it is for sufficiently small q, then a quadratic spline sex)
can be represented for t2 ~ X ~ t4 as

where (x - t3 ) + = max IX - t3 , O}. By setting x = t4 and simplifying, we have

with

1 + 2qO - (1 + q) 0 2

a = --=--~_---=-::.­

02

Indeed the recurrence

and (3.9)

holds for i = 1, 2,..., n - 1. From the geometry of parabolas it is clear that
we can maximize IsUn)1 subject to the constraints IS(T;)I = ly;1 ~ 1 by setting

for i = 1, 2,... , n. (3.11 )

Solving (3.10) for this data and requiring that sUn) be bounded indepen­
dently of n gives

for i = 1,2,..., n + 1, (3.12)

where 0 < fJ2 < fJ. < 1 are solutions of fJ2 - afJ + b = O. (It is necessary, but
elementary, to ascertain that a 2

- 4b > 0.) The constants C l and C2 are
determined by the initial conditions

and (3.13 )

The condition that fJ. < 1 is equivalent to 1 - a + b > 0 or

2(q + 1) 0 2 > 1 - q + 4q8. (3.14)



SPLINE INTERPOLATION AT KNOT AVERAGES 207

Combining (3.8) and (3.14) yields the inequality (3.2) of Condition A for
1 - W o < () < 1. Letting () tend to 1 then yields q 1 ~ 1.

A separate argument, which we omit, shows that this inequality must be
strict. This finishes the proof of Condition A is necessary.

By symmetry Condition C is also necessary.
To prove that Condition B is necessary we choose q so that t;+1 < r i < t it2

and, hence, 1 < () < 1 + q. Since this causes us to replace r i - t i = O(t i + I - t i)
by r i -I - t; = (() - l)(ti + I - ti)/q in our representations of sex), the efTet is to
replace () by (()-l)/q and to replace s(r i ) by s(r i _ l ) throughout the above
discussion. Another change is that the two initial conditions (3.13) are
replaced by "mixed boundary conditions" set)) + (a - q) s(t2 ) =
q2 s(r l )/(O-I)2 and (aq-b)s(tn+2)+bqs(tn+I)=q4s(rn)/(O-I)2. The
replacement for (3.12) is

for i = 2, 3,... , n + 2, (3.15)

where 0 <fll <flo are solutions of P - afl + b = 0 with a and b now given
by

and
b = q(q + 1 - ())2

(0_1)2
(3.16)

Because C4 includes the factor flo n
, the boundedness requirement is now

fl I< 1 < flo which is equivalent to the inequality (3.4) of Condition B. Since
the restriction 0 < 01 is equivalent to () < 1 + ql with ()I and ql given by (3.5)
and (3.3), respectively, the proof of necessity for Condition B is now com­
plete.

To prove sufficiency for these three conditions we first note that the steps
of the above argument are reversible. We also need to observe that: (1) the
data given by Yi = (_l)i are essentially "worst-case" and (2) Iisil is bounded
independently of n for each 0* 1, ()I whenever the sets {s(tJ} and {s(ri)} are
bounded independently of n. These observations being granted and a separate
argument being supplied for the cases () = 1, () l' the remaining details in the
proof of sufficiency are straightforward. I

It is easy to exploit Conditions A, B, C for any specific w. In addition
some special choices for () give useful information about general choices of
w. For example, letting 0 tend to 1 - W o gives 2(1 - wo? ~ 1. This is implied
by results in [6 J. Another example concerns () = 1 which yields
Wo < w2 + 2w). An example which gives no information is the w, () com­
bination for which (accidentally?) ql = 20 - 2; Condition B becomes the
tautology 1 < 2.

For other perspectives on quadratic spline interpolation, see 12, 4, 5, 8, 91.
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4. REMARK

The author is indebted to the referee for pointing out the following
corollary of Theorem 2.1:

THEOREM. If K is any nonempty compact subset of the set of points
(wo, wI' wz) satisfying W o+ WI + W z = 1, Wi ~ 0, W o <L W z <1, and if the
points of interpolation Ti = woti + WI t i +1+ wzti +2 with wE K, but possibly
depending on ti' t i +I' t i +z' are used for spline interpolation of degree k = 1,
then lim SUPt II P II is finite.

It would have been nice if the conditions of Theorem 3.1 were easy
enough to use to verify the quadratic analogue of the above.
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